Going Deeper with Embedded FPGA Platform for Convolutional Neural Network

Jiantao Qiu1, Jie Wang1, Song Yao1, Kaiyuan Guo1, Boxun Li1, Erjin Zhou1, Jincheng Yu1, Tianqi Tang1, Ningyi Xu2, Sen Song3, Yu Wang1, Huazhong Yang1

1Department of Electronic Engineering, Tsinghua University
2Hardware Computing Group, Microsoft Research Asia
3School of Medicine, Tsinghua University

Group URL: \url{http://nicsefc.ee.tsinghua.edu.cn}
\{songyao, yu-wang\}@mail.tsinghua.edu.cn

2016/2/22
Contents

• Deep Learning and Convolutional Neural Network
• Motivation
• Related Work
• Our Work: Angel-Eye
 – Overall Flow
 – V1: Architecture and Implementation Details
 – V1: Performance Comparison
 – V2: Brief introduction
• Open Question: Computation Granularity
Deep Learning

- Deep Learning: The new tide in artificial intelligence
 - Inspired by neuroscience
 - A collection of simple trainable mathematical units, which collaborate to compute a complicated function.
 - Deep Neural Network (DNN)/Recurrent Neural Network (RNN)/Long-Short Term Memory (LSTM)/Convolutional Neural Network (CNN)
Convolutional Neural Network (CNN)

- CNN: State-of-the-art in visual recognition applications

<table>
<thead>
<tr>
<th>Year</th>
<th>Team</th>
<th>Top-5 Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>NEC</td>
<td>71.8%</td>
</tr>
<tr>
<td>2011</td>
<td>XRCE</td>
<td>74.2%</td>
</tr>
<tr>
<td>2012</td>
<td>SuperVision</td>
<td>84.7%</td>
</tr>
<tr>
<td>2013</td>
<td>Clarifai</td>
<td>88.3%</td>
</tr>
<tr>
<td>2014</td>
<td>GoogLeNet</td>
<td>93.3%</td>
</tr>
<tr>
<td>2015</td>
<td>MSRA</td>
<td>96.4%</td>
</tr>
</tbody>
</table>

Top-5 accuracy of image classification in Image-Net Large-Scale Visual Recognition Challenge (ILSVRC)
Contents

• Deep Learning and Convolutional Neural Network
• Motivation
• Related Work
• Our Work: Angel-Eye
 – Overall Flow
 – V1: Architecture and Implementation Details
 – V1: Performance Comparison
 – V2: Brief introduction
• Open Question: Computation Granularity
CNN: Mainstream in Computer Vision

- CNN: State-of-the-art in visual recognition applications

Pedestrian Detection [NUS2015]

Vehicle and Lane Detection [Stanford2015]

Tracking [UIUC2015]

Object detection

Posture estimation

Face recognition
CNN: High Complexity

- Conv Layers: bounded by computations

- FC Layers: bounded by memory access
Motivation

Why customized hardware?
• High complexity versus Limited energy
• CPU and GPU are not efficient enough

How to accelerate CNN with FPGA?
• High Complexity under Limited Resource
 • CNN Model Compression
 • Highly efficient computing units
 • Using convolver for FC layers
• High Complexity under Limited Bandwidth
 • CNN model compression
 • Shorter representations
 • Reducing memory access

CNN acceleration is more than hardware
Complete compilation tool is expected
Contents

• Deep Learning and Convolutional Neural Network
• Motivation
• Related Work
• Our Work: Angel-Eye
 – Overall Flow
 – V1: Architecture and Implementation Details
 – V1: Performance Comparison
 – V2: Brief introduction
• Open Question: Computation Granularity
Related Work

- **(Baidu Slides)**
- **(CAS) T. Chen et al.** DianNao: A small-footprint high-throughput accelerator for ubiquitous machine learning, ASPLOS 2014
- **(CAS) Z. Du et al.** Shidiannao: Shifting vision processing closer to the sensor, ISCA 2015
- **(Stanford) S. Han et al.** EIE: Efficient Inference Engine on Compressed Deep Neural Network, arxiv
Related Work

• Memory System Optimization
 – DianNao Series

DianNao ‘14
Single-chip CNN/DNN Accelerator

DaDianNao ‘14
Multi-chip CNN/DNN Accelerator

ShiDianNao ‘15
Single-chip CNN Accelerator for Visual Recognition Algorithms

PuDianNao ‘15
An ML accelerator which accommodates seven representative ML techniques (CNN/DNN included).

*1 Diannao: A small-footprint high-throughput accelerator for ubiquitous machine learning, Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam. ASPLOS ’14
*4 Shidiannao: Shifting vision processing closer to the sensor, Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen, and O. Temam, ISCA ’15
Related Work

- Memory System Optimization
 - DianNao Series

How to solve the memory problem?

Strategy 1: Tiling and Data Reuse
Cut down memory traffic

Strategy 2: Storage Buffer
Dedicated buffer for data reuse

Strategy 3: On-Chip Memory
Using on-chip memory to store all parameters

Problem: Using on-chip memory to store parameters in each layer of the CNN model, hard to be used for state-of-the-art large CNN models
Related Work

• Computing Engine Optimization

All existing work considers partial of the entire flow, and thus are hard to fully utilize hardware and achieve optimal energy efficiency.

Contents

• Deep Learning and Convolutional Neural Network
• Motivation
• Related Work
• **Our Work: Angel-Eye**
 – Overall Flow
 – V1: Architecture and Implementation Details
 – V1: Performance Comparison
 – V2: Brief introduction
• Open Question: Computation Granularity
Overall Flow

- Overall Flow of Angel-Eye

```
CNN Model
   Model compression
Compressed Floating-Point Model
      Data/weight quantization
Compressed Fixed-Point Model
         Compilation
Instructions
```

“Goal: accelerate fast algorithms.”
Model Compression

- Model Compression
 - Reducing complexity while maintaining comparable accuracy

- Singular Value Decomposition (SVD)
 - No demand for specific computation unit
 - Moderate compression
 - Computation model
 \[f_{out} = W f_{in} + b \]
 \[W \approx U_d S_d V_d \]
 - Storage complexity
 \[O(n_{in} n_{out}) \]
 \[O(d n_{in} + d n_{out}) \]
 \[d \ll n_{in}, n_{out} \]

<table>
<thead>
<tr>
<th>Network</th>
<th>FC6</th>
<th># of total weights</th>
<th># of operations</th>
<th>Top-5 accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGG-16</td>
<td>25088 \times 4096</td>
<td>138.36M</td>
<td>30.94G</td>
<td>88.00%</td>
</tr>
<tr>
<td>VGG-16-SVD</td>
<td>25088 \times 500 + 500 \times 4096</td>
<td>50.18M</td>
<td>30.76G</td>
<td>87.96%</td>
</tr>
</tbody>
</table>
Data Quantization

- Data Quantization
 - Uses shorter fixed-point numbers

Resources needed by a multiplier

- Dynamic-Precision Data Quantization
 - Dynamic for different layer

Proposed Flow

- Offline parameter quantization
- Online data quantization
- Parameter dynamic range analysis
- Feature maps
- Layer 1
- Layer N
- Fixed-point CNN model
- Float-point CNN model
- Parameter and data quantization configuration
Data Quantization

- Dynamic-Precision Data Quantization Results (Simulation results)

<table>
<thead>
<tr>
<th>Network</th>
<th>VGG16</th>
<th>VGG16-SVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Bits</td>
<td>Single-float</td>
<td>16</td>
</tr>
<tr>
<td>Weight Bits</td>
<td>Single-float</td>
<td>16</td>
</tr>
<tr>
<td>Data Precision</td>
<td>N/A</td>
<td>2^{-2}</td>
</tr>
<tr>
<td>Weight Precision</td>
<td>N/A</td>
<td>2^{-15}</td>
</tr>
<tr>
<td>Top-1 Accuracy</td>
<td>68.1%</td>
<td>68.0%</td>
</tr>
<tr>
<td>Top-5 Accuracy</td>
<td>88.0%</td>
<td>87.9%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Network</th>
<th>CaffeNet</th>
<th>VGG16-SVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Bits</td>
<td>Single-float</td>
<td>16</td>
</tr>
<tr>
<td>Weight Bits</td>
<td>Single-float</td>
<td>16</td>
</tr>
<tr>
<td>Data Precision</td>
<td>N/A</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Weight Precision</td>
<td>N/A</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Top-1 Accuracy</td>
<td>53.9%</td>
<td>53.9%</td>
</tr>
<tr>
<td>Top-5 Accuracy</td>
<td>77.7%</td>
<td>77.1%</td>
</tr>
</tbody>
</table>
Instruction Set

• Coarse-grained Instructions

Instruction Set Table

<table>
<thead>
<tr>
<th>Index</th>
<th>Pool Bypass</th>
<th>NL Bypass</th>
<th>Zero Switch</th>
<th>Result Shift</th>
<th>Bias Shift</th>
<th>Write En</th>
<th>PE En</th>
<th>Phase Type</th>
<th>Pic Num</th>
<th>Tile Size</th>
<th>Layer Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>No</td>
<td>2</td>
<td>First</td>
<td>2</td>
<td>Tr</td>
<td>Conv</td>
</tr>
<tr>
<td>2</td>
<td>Yes</td>
<td>Yes</td>
<td>Bias</td>
<td>X</td>
<td>BS</td>
<td>No</td>
<td>2</td>
<td>Calculate</td>
<td>2</td>
<td>Tr</td>
<td>Conv</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>No</td>
<td>Zero</td>
<td>X</td>
<td>X</td>
<td>PE</td>
<td>2</td>
<td>Calculate</td>
<td>2</td>
<td>Tr</td>
<td>Conv</td>
</tr>
<tr>
<td>4</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>RS</td>
<td>X</td>
<td>DDR</td>
<td>2</td>
<td>Last</td>
<td>2</td>
<td>Tr</td>
<td>Conv</td>
</tr>
</tbody>
</table>

• **Hardware handles fine-grained operations**
 • Inst 1: commands Input Buffer to load all the needed data
 • Inst 2: starts calculating the four tiled blocks in the output layer
 • Inst 3: Write En is set as “PE” to command Output Buffer send the intermediate results back to the Pes
 • Inst 4: Write EN is set as “DDR” to command the Output Buffer write results back to the external memory (last layer)
Architecture and Implementation Details

- **Overall Architecture**

- **Processing System**
 - Flexibility
 - CPU + DDR
 - Scheduling operations
 - Prepare data and instructions
 - Realize Softmax function

- **Programmable Logic**
 - Hardware acceleration
 - Computing Complex + On-chip Buffers + Controller + DMA
 - Few Complex PEs

- **Achieve three-level parallelism**
 - Inter-output: multiple PEs
 - Intra-output
 - Operator-level

- **16-bit dynamic-precision data quantization**
• Achieve intra-output parallelism by placing multiple Convolvers
• Convolver: optimized for 3x3 convolution operation
• Adder Tree: sum up results of one convolution operation
• NL: supports non-linear function (ReLU)
• Pool: supports max-pooling
• Bias Shift & Data Shift: support dynamic-precision fixed-point numbers
• Line-buffer design
 – Optimized for 3x3 Convolver
 – Supports operator-level parallelism
Architecture and Implementation Details

- **Tiling and Data Reuse Strategy**

- **Using Convolver for FC layers**
 - FC layers are bandwidth-bounded
 - Convolvers are enough to compute FC layers
 - Save resource to accelerate Conv layers

Figure 9: Data arrangement in external memory: (a) Linear arrangement; (b) DMA-oriented arrangement.
Performance Comparison

- **Performance and Energy Efficiency Comparison**

<table>
<thead>
<tr>
<th></th>
<th>Chakaradhar 2010</th>
<th>Gokhale 2014</th>
<th>Zhang 2015</th>
<th>Ours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform</td>
<td>Virtex 5 SX240t</td>
<td>Zynq XC7Z045</td>
<td>Virtex7 VX485t</td>
<td>Zynq XC7Z045</td>
</tr>
<tr>
<td>Clock (MHz)</td>
<td>120</td>
<td>150</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>Bandwidth (GB/s)</td>
<td>-</td>
<td>4.2</td>
<td>12.8</td>
<td>4.2</td>
</tr>
<tr>
<td>Quantization</td>
<td>48-bit fixed</td>
<td>16-bit fixed</td>
<td>32-bit float</td>
<td>16-bit fixed</td>
</tr>
<tr>
<td>Problem Complexity (GOP)</td>
<td>0.52</td>
<td>0.552</td>
<td>1.33</td>
<td>30.76</td>
</tr>
<tr>
<td>Performance (GOP/s)</td>
<td>16</td>
<td>23.18</td>
<td>61.62</td>
<td>136.97 (Overall) 187.89 (Conv)</td>
</tr>
<tr>
<td>Power (W)</td>
<td>14</td>
<td>8</td>
<td>18.61</td>
<td>9.63</td>
</tr>
<tr>
<td>Power Efficiency (GOP/J)</td>
<td>1.14</td>
<td>2.90</td>
<td>3.31</td>
<td>14.22 (Overall) 19.50 (Conv)</td>
</tr>
</tbody>
</table>
Angel-Eye V2

- Similar overall architecture
- Fully parameterized design
 - Supports different data quantization settings
 - Supports different PE and Convolver number
- Supports different Conv kernel size
- User-friendly compiler
- Fine-grained instructions
 - Increase the flexibility of compiler
 - More optimization in compiler back-end

<table>
<thead>
<tr>
<th>Platform</th>
<th>Performance</th>
<th>Power</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angel-Eye V2 on Xilinx 7020</td>
<td>30GOP/S</td>
<td>~2W</td>
<td>~40 dollar</td>
</tr>
<tr>
<td>Nvidia Tegra K1</td>
<td>60-90GOP/S</td>
<td>~10-15W</td>
<td>199 dollar</td>
</tr>
</tbody>
</table>
Angel-Eye V2: Face Det + Alig

- Overall Flow

 ![Diagram showing the overall flow of Angel-Eye V2](image)

 - **Input**: RGB image
 - **Face Detection**: Haar-like feature on ARM
 - **Face Alignment**: 9-layer CNN in FPGA

 Convolutional Neural Network (CNN) architecture:
 - 16Conv3x3 -> 16Conv3x3 -> 32Conv3x3 -> 32Conv3x3 -> 48Conv3x3 -> 64Conv3x3 -> 64Conv3x3 -> 80Conv3x3 -> 128Conv3x3 -> FC10

- 8-bit dynamic-precision quantization without fine-tuning

<table>
<thead>
<tr>
<th></th>
<th>27.3794</th>
<th>32.0091</th>
<th>66.1796</th>
<th>27.1025</th>
<th>45.1339</th>
<th>33.6290</th>
<th>67.4658</th>
<th>62.2705</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed-point Network</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Original Network</td>
<td>26.0281</td>
<td>31.5535</td>
<td>65.0193</td>
<td>25.9672</td>
<td>43.4501</td>
<td>33.8175</td>
<td>66.2999</td>
<td>61.1216</td>
</tr>
</tbody>
</table>
Contents

- Deep Learning and Convolutional Neural Network
- Motivation
- Related Work
- Our Work: Angel-Eye
 - Overall Flow
 - V1: Architecture and Implementation Details
 - V1: Performance Comparison
 - V2: Brief introduction
- Open Question: Computation Granularity
Open question: Computation Granularity

- Computer Engine Architecture Comparison
 - [KAIST ISSCC2016] and ours

Few complex compute elements
Open question: Computation Granularity

- Computer Engine Architecture Comparison

Few complex PEs VS. Many simple PEs

Guess: Neural networks are highly predictable and serial. Few complex PEs can better utilize these characters.
Conclusion

• Deep Learning: Mainstream in AI
• Motivation
• Related Work
• Our Work: Angel-Eye
 – Overall Flow
 – V1: Architecture and Implementation Details
 – V1: Performance Comparison
 – V2: Brief introduction
• Open Question: Computation Granularity
Thanks!
Q&A